Variation of Mechanical Properties of Structural Components of Hoisting-and-Conveying and Construction Machinery under Dynamic Stresses
نویسندگان
چکیده
Dynamic force (vibration and impulse force) modifies mechanical properties and flow behavior of solid bodies. Experiments in shearing of reinforcement bars with vibration (7.9 kHz) conducted by authors and S.A. Evtjukov at the Department of Construction Machinery of SPbGASU (Saint Petersburg State University of Architecture and Civil Engineering) revealed the reduction of the static part of the cutting force approximately 1.8-2.2 times less and with impulse force with 25 Hz frequency – 4-5 times less. In case of vibration, variation of mechanical properties and flow behavior of cut metal through vibroactivation was observed. Reflective effect and three focusing mechanisms stimulate these variations. The examined effect can be applied in metal treatment under pressure that enables to improve the quality of products, service life of instruments and processing machines. With the knowledge of presence of dynamic forces (impulse, in particular) it is possible to find engineering solutions decreasing or excluding influence of dynamic forces upon friction couples or constructional steelworks and therefore to boost their reliability and endurance, to exclude “unpredictable” accidents.
منابع مشابه
Wave Propagation Analysis of CNT Reinforced Composite Micro-Tube Conveying Viscose Fluid in Visco-Pasternak Foundation Under 2D Multi-Physical Fields
In this research, wave propagation analysis in polymeric smart nanocomposite micro-tubes reinforced by single-walled carbon nanotubes (SWCNT) conveying fluid is studied. The surrounded elastic medium is simulated by visco-Pasternak model while the composite micro-tube undergoes electro-magneto-mechanical fields. By means of micromechanics method, the constitutive structural coefficients of nano...
متن کاملEffect of Material Gradient on Stresses of FGM Rotating Thick-Walled Cylindrical Pressure Vessel with Longitudinal Variation of Properties under Non-uniform Internal and External Pressure
The present paper provides a semi-analytical solution to obtain the displacements and stresses in a functionally graded material (FGM) rotating thick cylindrical shell with clamped ends under non-uniform pressure. Material properties of cylinder are assumed to change along the axial direction according to a power law form. It is also assumed that the Poisson’s ratio is constant. Given the exist...
متن کاملAnalysis of Motion of Micro-Gripper Exposed to the Electric Field and Thermal Stresses for Using in Micro-Robotics
Micro system technology is a relatively new scientific research that deals with the development and study of properties of materials in micro dimensions. Micro-grippers are widely used in switching, positioning, and assembling micron sized components in micro-robotics. In this study, the static and dynamic behavior of visco-elastic Micro-Tweezers under the thermal and electrostatic field is...
متن کاملDetermination of Residual Stress for Single and Double Autofrettage of Thick-walled FG Cylinders Subjected to Dynamic Loading
In the present article a numerical procedure is developed for dynamic analysis of single and double autofrettage of thick–walled FG cylinders under transient loading. The governing differential equations are discretized and presented in explicit Lagrangian formalism. The explicit transient solution of discrete equations are obtained on the meshed region and results for stress and strain distrib...
متن کاملDynamic and Quasi-Static Tensile Properties of Structural S400 Steel
The study of mechanical behavior of the structural steel S400 under quasi- static and dynamic loading has been the subject of this investigation. In oder to obtain different stress - triaxiality conditions the specimens were notched with 1, 1.5, 2 and 3.5 mm notch radius. The results of fractography show as the velocity of tension increases, ductility reduces and a ductile-brittle transition oc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013